Sains Malaysiana 53(10)(2024): 3253-3262

http://doi.org/10.17576/jsm-2024-5310-02

 

Perbandingan Pengekspresan Antigen Kluster Pembezaan dalam Subjenis Tumor dan Darah Periferi Pesakit Kanser Gaster

(Comparison of Cluster of Differentiation Antigens Expression in Tumor Subtypes and Peripheral Blood of Gastric Cancer Patients)

 

ASIF SUKRI1, ALFIZAH HANAFIAH2,*, NIK RITZA KOSSAI3, MOHAMAD AZNAN SHUHAILI3, MUSTAFA MOHAMMED TAHER3 & RAJA AFFENDI RAJA ALI4

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Mikrobiologi Perubatan dan Imunologi, Fakulti Perubatan, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia

3Jabatan Surgeri, Fakulti Perubatan, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia

4Sekolah Perubatan dan Sains Kesihatan, Sunway University Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia

 

Diserahkan: 30 April 2024/Diterima: 10 Julai 2024

 

Abstrak

Kanser gaster merupakan salah satu kanser utama yang paling banyak menyebabkan kematian di seluruh dunia. Diagnosis dan prognosis kanser gaster adalah sukar untuk dibuat dan kebanyakan pesakit didiagnos dengan kanser ini pada peringkat yang teruk. Prognosis kanser gaster adalah berlainan berdasarkan kepada subjenis kanser gaster dan jangkitan Helicobacter pylori. Antigen kluster pembezaan (CD) boleh digunakan sebagai biopenanda untuk diagnosis dan prognosis penyakit kronik kerana pengekspresannya yang berubah mengikut tahap penyakit. Objektif kajian ini adalahuntuk membuat perbandingan pengekspresan antigen CD dalam sel darah periferi dan sel adenokarsinoma pesakit kanser gaster dan menentukan peranan CD55 dalam rembesan interleukin-8 (IL-8) oleh sel selanjar. Sampel darah periferi dan tumor telah diambil daripada pesakit kanser gaster. Sampel kemudian diproses untuk mendapatkan ampaian sel tunggal. Imunofenotip antigen CD telah dijalankan menggunakan slaid mikroatur DotScanTM. Penyenyapan CD55 telah dibuat menggunakan RNA pengganggu kecil (siRNA). Sembilan belas antigen CD, kebanyakan daripadanya adalah penanda untuk sel B, diekspres secara lebih tinggi dalam tumor subjenis kardia berbanding subjenis bukan kardia. CD182 dan CD125 merupakan reseptor interleukin yang penting, diekspres lebih tinggi dalam subjenis bukan kardia daripada subjenis kardia. Pengekspresan 32 antigen CD yang lebih tinggi dapat diperhatikan dalam tumor subjenis difus berbanding subjenis usus. CD29 dan CD73 diekspres dengan tinggi dalam sarkoma gastrointestinal. Perbandingan pengekspresan antigen CD menunjukkan CD11a dan CD49d diekspres sama tinggi dalam darah dan tumor. Penyenyapan CD55 mengawal pengeluaran IL-8 dalam sel yang dijangkiti oleh H. pylori secara bergantung kepada kehadiran gen berkaitan sitotoksin (cagA). Kajian ini menunjukkan perbezaan pengekspresan antigen CD dalam pelbagai subjenis kanser gaster dan berpotensi dijadikan biopenanda untuk diagnosis kanser gaster secara tidak invasif.

 

Kata kunci: CD55; Helicobacter pylori; kanser gaster; kluster pembezaan  Top of Form

 

Abstract

Gastric cancer is one of the major cancers that cause the most deaths worldwide. Diagnosis and prognosis of gastric cancer are difficult to make, and most patients are diagnosed with this cancer at an advanced stage. The prognosis of gastric cancer varies depending on the subtype of gastric cancer and the infection of Helicobacter pylori. Cluster of differentiation (CD) antigens can be used as biomarkers for the diagnosis and prognosis of chronic diseases because their expression changes according to the disease stage. The objective of this study was to compare the expression of CD antigens in peripheral blood cells and adenocarcinoma cells of gastric cancer patients and to determine the role of CD55 in the secretion of interleukin-8 (IL-8) in gastric epithelial cells. Peripheral blood and tumor samples were collected from gastric cancer patients. The samples were then processed to obtain single-cell suspensions. Immunophenotyping of CD antigens was performed using DotScanTM microarray slides. CD55 silencing was performed using small interfering RNA (siRNA). Nineteen CD antigens, most of which are markers for B cells, were expressed higher in cardia than non-cardia subtypes. CD182 and CD125, important interleukin receptors, were expressed higher in non-cardia than cardia subtypes. Higher expression of 32 CD antigens was observed in diffuse subtypes compared to intestinal subtypes. CD29 and CD73 were highly expressed in gastrointestinal sarcoma. Comparison of CD antigen expression showed CD11a and CD49d expressed equally high in blood and tumor. CD55 knockdown regulated IL-8 secretion in cells infected by H. pylori in a cytotoxin-associated gene (cagA)-dependent manner. This study demonstrates differences in CD antigen expression in various subtypes of gastric cancer and the potential for them to be used as non-invasive biomarkers for gastric cancer diagnosis.

 

Keywords: CD55;Top of Form cluster of differentiation; gastric cancer; Helicobacter pylori

 

RUJUKAN

Antonioli, L., Yegutkin, G.G., Pacher, P., Blandizzi, C. & Haskó, G. 2016. Anti-CD73 in cancer immunotherapy: Awakening new opportunities. Trends Cancer 2(2): 95-109.

Belov, L., de la Vega, O., dos Remedios, C.G., Mulligan, S.P. & Christopherson, R.I. 2001. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Research 61: 4483-4489.

Bertaux-Skeirik, N., Feng, R., Schumacher, M.A., Li, J., Mahe, M.M., Engevik, A.C., Javier, J.E., Peek Jr., R.M., Ottemann, K., Orian-Rousseau, V., Boivin, G.P., Helmrath, M.A., & Zavros, Y. 2015. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathogens 11(2): e1004663.

Beswick, E.J., Pinchuk, I.V., Suarez, G., Sierra, J.C. & Reyes, V.E. 2006. Helicobacter pylori CagA-dependent macrophage migration inhibitory factor produced by gastric epithelial cells binds to CD74 and stimulates procarcinogenic events. Journal of Immunology 176(11): 6794-6801.

Corless, C.L. 2014. Gastrointestinal stromal tumors: what do we know now? Modern Pathology 27: S1-S16.

El-Omar, E.M., Rabkin, C.S., Gammon, M.D., Vaughan, T.L., Risch, H.A., Schoenberg, J.B., Stanford, J.L., Mayne, S.T., Goedert, J., Blot, W.J., Fraumeni Jr., J.F. & Chow, W.H. 2003. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124(5): 1193-1201.

El-Omar, E.M., Carrington, M., Chow, W.H., McColl, K.E., Bream, J.H., Young, H.A., Herrera, J., Lissowska, J., Yuan, C.C., Rothman, N., Lanyon, G., Martin, M., Fraumeni Jr., J.F. & Rabkin, C.S. 2000. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404: 398-402.

Epplein, M., Xiang, Y.B., Cai, Q., Peek Jr., R.M., Li, H., Correa, P., Gao, J., Wu, J., Michel, A., Pawlita, M., Zheng, W. & Shu, X.O. 2013. Circulating cytokines and gastric cancer risk. Cancer Causes Control 24(12): 2245-2250.

Fukamachi, H., Seol, H.S., Shimada, S., Funasaka, C., Baba, K., Kim, J.H., Park, Y.S., Kim, M.J., Kato, K., Inokuchi, M., Kawachi, H., Yook, J.H., Eishi, Y., Kojima, K., Kim, W.H., Jang, S.J. & Yuasa, Y. 2013. CD49fhigh cells retain sphere-forming and tumor initiating activities in human gastric tumors. PLoS ONE 8(8): e72438.

Hanafiah, A., Sukri, A., Kosai, N.R., Shuhaili, M.A., Mohammed Taher, M. & Raja Ali, R.A. 2023. Immunophenotyping of gastritis, gastric ulcer and gastric cancer using a cluster of differentiation (CD) antibody microarray. Sains Malaysiana 52(1): 187-197.

Hatakeyama, M. & Higashi, H. 2005. Helicobacter pylori CagA: A new paradigm for bacterial carcinogenesis. Cancer Science 96(12): 835-843.

Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. 2000. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356(9244): 1795-1799.

Ishigami, S., Natsugoe, S., Tokuda, K., Nakajo, A., Che, X., Iwashige, H., Aridome, K., Hokita, S. & Aikou, T. 2000. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3): 577-583.

Kalina, T., Fišer, K., Pérez-Andrés, M., Kuzílková, D., Cuenca, M., Bartol, S.J.W., Blanco, E., Engel, P. & van Zelm, M.C. 2019. CD maps-dynamic profiling of CD1-CD100 surface expression on human leukocyte and lymphocyte subsets. Frontiers in Immunology 10: 2434. 

Kamangar, F., Cheng, C., Abnet, C.C. & Rabkin, C.S. 2006. Interleukin-1B polymorphisms and gastric cancer risk--a meta-analysis. Cancer Epidemiology Biomarkers & Prevention 15(10): 1920-1928.

Keates, S., Hitti, Y.S., Upton, M. & Kelly, C.P. 1997. Helicobacter pylori infection activates NF-kappa B in gastric epithelial cells. Gastroenterology 113(4): 1099-1109.

Kim, J., Cho, Y.A., Choi, I.J., Lee, Y.S., Kim, S.Y., Shin, A., Cho, S.J., Kook, M.C., Nam, J.H., Ryu, K.W., Lee, J.H. & Kim, Y.W. 2012. Effects of interleukin-10 polymorphisms, Helicobacter pylori infection, and smoking on the risk of noncardia gastric cancer.  PLoS ONE 7(1): e29643.

Konen, J.M., Fradette, J.J. & Gibbons, D.L. 2019. The good, the bad and the unknown of CD38 in the metabolic microenvironment and immune cell functionality of solid tumors. Cells 9(1): 52.

Koniger, V., Holsten, L., Harrison, U., Busch, B., Loell, E., Zhao, Q., Bonsor, D.A., Roth, A., Kengmo-Tchoupa, A., Smith, S.I., Mueller, S., Sundberg, E.J., Zimmermann, W., Fischer, W., Hauck, C.R. & Haas, R. 2016. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nature Microbiology 2: 16188.

Kužílková, D., Puñet-Ortiz, J., Aui, P.M., Fernández, J., Fišer, K., Engel, P., van Zelm, M.C. & Kalina, T. 2022. Standardization of workflow and flow cytometry panels for quantitative expression profiling of surface antigens on blood leukocyte subsets: An HCDM CDMaps initiative. Front Immunol. 13: 827898. 

Lamb, A. & Chen, L.F. 2010. The many roads traveled by Helicobacter pylori to NFκB activation. Gut Microbes. 1(2): 109-113.

Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R. & Sitarz, R. 2020. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal of Molecular Sciences 21(11): 4012.

Michetti, M., Kelly, C.P., Kraehenbuhl, J.P., Bouzourene, H. & Michetti, P. 2000. Gastric mucosal α4β7-integrin - positive CD4 T lymphocytes and immune protection against Helicobacter infection in mice. Gastroenterology 119(1): 109-118.

Mimura, K., Kamiya, T., Shiraishi, K., Kua, L.F., Shabbir, A., So, J., Yong, W.P., Suzuki, Y., Yoshimoto, Y., Nakano, T., Fujii, H., Campana, D. & Kono, K. 2014. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer. International Journal of Cancer 135(6): 1390-1398.

Nilsson, B., Bümming, P., Meis-Kindblom, J.M., Odén, A., Dortok, A., Gustavsson, B., Sablinska, K. & Kindblom, L.G. 2005. Gastrointestinal stromal tumors: The incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era--a population-based study in western Sweden. Cancer 103(4): 821-829.

Qiu, M-Z., Cai, M-Y., Zhang, D-S., Wang, Z-Q., Wang, D-S., Li, Y-H. & Xu, R-H. 2013. Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China. Journal of Translational Medicine 11: 58.

Rahman, W., Tu, T., Budzinska, M., Huang, P., Belov, L., Chrisp, J.S., Christopherson, R.I., Warner, F.J., Bowden, D.S., Thompson, A.J., Bowen, D.G., Strasser, S.I., Koorey, D., Sharland, A.F., Yang, J.Y., McCaughan, G.W. & Shackel, N.A. 2015. Analysis of post-liver transplant Hepatitis C virus recurrence using serial cluster of differentiation antibody microarrays. Transplantation 99(9): e120-e126.

Rawla, P. & Barsouk, A. 2019. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przeglad Gastroenterologiczny 14(1): 26-38. 

Sukri, A., Hanafiah, A., Kosai, N.R., Mohammed Taher, M. & Mohamed, R. 2022. New insight on the role of Helicobacter pylori cagA in the expression of cell surface antigens with important biological functions in gastric carcinogenesis. Helicobacter 27(5): e12913.

Sukri, A., Hanafiah, A., Kosai, N.R., Mohamed Taher, M. & Mohamed Rose, I. 2016. Surface antigen profiling of Helicobacter pylori-infected and -uninfected gastric cancer cells using antibody microarray. Helicobacter 21(5): 417-427.

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71(3): 209-249. 

Takahashi-Kanemitsu, A., Knight, C.T. & Hatakeyama, M. 2020. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cellular & Molecular Immunology 17(1): 50-63.

Takaki, S., Kanazawa, H., Shiiba, M. & Takatsu, K. 1994. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor α chain and its function in il-5-mediated growth signal transduction. Molecular and Cellular Biology 14(11): 7404-7413.

Thrift, A.P., Wenker, T.N. & El-Serag, H.B. 2023. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nature Reviews Clinical Oncology 20(5): 338-349. 

Tian, H.F., Xing, J., Tang, X.Q., Chi, H., Sheng, X.Z. & Zhan, W.B. 2022. Cluster of differentiation antigens: Essential roles in the identification of teleost fish T lymphocytes. Marine Life Science & Technology 4(3): 303-316.

Tsumuraya, M., Kato, H., Miyachi, K., Sasaki, K., Tsubaki, M., Akimoto, K. & Sunagawa, M. 2010. Comprehensive analysis of genes involved in the malignancy of gastrointestinal stromal tumors. Anticancer Research 30(7): 2705-2715.

Usui, Y., Taniyama, Y., Endo, M., Koyanagi, Y.N., Kasugai, Y., Oze, I., Ito, H., Imoto, I., Tanaka, T., Tajika, M., Niwa, Y., Iwasaki, Y., Aoi, T., Hakozaki, N., Takata, S., Suzuki, K., Terao, C., Hatakeyama, M., Hirata, M., Sugano, K., Yoshida, T., Kamatani, Y., Nakagawa, H., Matsuda, K., Murakami, Y., Spurdle, A.B., Matsuo, K. & Momozawa, Y. 2023. Helicobacter pylori, homologous-recombination genes, and gastric cancer. The New England Journal of Medicine 388(13): 1181-1190.

Vivier, E., Ugolini, S., Blaise, D., Chabannon, C. & Brossay, L. 2012. Targeting natural killer cells and natural killer T cells in cancer. Nature Reviews Immunology 12(4): 239-252.

Wang, Z., Liu, H., Shen, Z., Wang, X., Zhang, H., Qin, J., Xu, J., Sun, Y. & Qin, X. 2015. The prognostic value of CXC-chemokine receptor 2 (CXCR2) in gastric cancer patients. BMC Cancer 15: 766.

Wu, J.Q., Wang, B., Belov, L., Chrisp, J., Learmont, J., Dyer, W.B., Zaunders, J., Cunningham, A.L., Dwyer, D.E. & Saksena, N.K. 2007. Antibody microarray analysis of cell surface antigens on CD4+ and CD8+ T cells from HIV+ individuals correlates with disease stages. Retrovirology 4: 83.

Zhao, X. & Yue, C. 2012. Gastrointestinal stromal tumor. Journal of Gastrointestinal Oncology 3(3): 189-208.

Zhou, J., Belov, L., Huang, P.Y., Shin, J.S., Solomon, M.J., Chapuis, P.H., Bokey, L., Chan C., Clarke, C., Clarke, S.J. & Christopherson, R.I. 2010. Surface antigen profiling of colorectal cancer using antibody microarrays with fluorescence multiplexing. Journal of Immunological Methods 355(1-2): 40-51.

 

*Pengarang untuk surat-menyurat; email: alfizah@ppukm.ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya